Molecular Photochemistry. X. The Photocycloaddition of Acetone to 1-Methoxy-1-butene. A Comparison of Singlet and Triplet Mechanisms and Biradical Intermediates

Sir:

The photocycloaddition of ketones to ethylenes has attracted considerable synthetic and mechanistic interest recently. Although triplet ketones are generally the chemically active states in these reactions, cases are now known in which the ketone singlets initiate attack on the ethylene. To date, however, there have been no studies which answer the questions:

(a) What are the relative reactivities of the S1 and T1 states of a given ketone toward a single olefin? (b) What effect, if any, will spin differences have on attack of an excited ketone on an ethylene? (c) If biradical intermediates are formed by attack of S1 and T1 on an ethylene, are these intermediates different or comparable in their structures and chemical properties? The last question is particularly intriguing because it examines the nature of spin correlation (spin memory) in a 1,4 biradical, a problem of considerable theoretical and practical interest since, if spin inversion is slow relative to competing processes, biradicals of different multiplicities may exhibit different chemistry.

The photoaddition of acetone to cis-1-methoxy-1-butene (c-1) discussed below appears to be a particularly attractive case to study in order to answer questions a-c. Both S1 (n,π*) and T1 (π,π*) states of acetone (vide infra) attack c-1 to produce the isomeric oxetanes 2-5. In order to simplify analyses, 4 and 5 were conveniently eliminated by treatment of the photolysate with dilute (0.01 M) HCl. The ratio and absolute yields of 2 and 3 were then able to be determined accurately. Stern-Volmer plots of φ/φ0 for the formation of 2 and 3 vs 1,3-pentadiene (6) are shown in Figure 1. At low concentrations of 6 these plots yield a straight line with a slope of 126 and a limiting ratio of 2:3 of 1.1. However, at high concentrations of 6 the ratio of 2:3 steadily increases and then reaches a limit of 4:1. The same limiting ratio is approached as the concentration of c-1 is increased. A Stern-Volmer plot (1/φ0 vs 1/[c-1]) of the quantum yield for the formation of 2 as a function of c-1 in the presence of 0.3 M 6 yields a straight line with a slope of 142 and an intercept of 75. (Preliminary results (4) Direct measurement of comparative bimolecular reactivities of S1 and T1 of an alkyl ketones have not been previously measured. See, however, ref 1a and 11 for related studies.

(5) Biradical intermediates have long been assumed to be intermediates in the photocycloaddition of ketones to olefins, but only recently has this point been examined experimentally. For a review see ref 2 and N. J. Turro, "Molecular Photochemistry," W. A. Benjamin Co., New York, N. Y., 1965, p 209.

(8) Compounds 2-4 were ambiguously identified from spectral data. The assignments of stereochecmistry in 2 and 3 are made on the basis of the nmr coupling constants of the ring hydrogens (J = 6.5 and 5.5 Hz, respectively) and the correlation of the stereospecific singlet addition of acetone to c-1 and c-1 with predominant formation of 2 and 3, respectively.

(9) Compound 5 elutes with 3 during gpc analysis. Compounds 2 and 3 were totally unaffected by the addition of a trace of HCl.

Communications to the Editor
indicate that *trans*-1-methoxy-1-butene (t-1) shows similar behavior.) *cis*-trans isomerization of c-1 to t-1 competes with the cycloaddition reaction. Finally, the ratio (2 + 3): (4 + 5) is 1.4 for both singlet and triplet additions.

In the presence of 0.3 M only singlet acetone (A$_3$) reacts with c-1, since 6 quenches acetone triplets (A$_3$) at close to the rate of diffusion and the quenching of acetone triplets by c-1 is at least 100 times less efficient (Figure 1). At low concentrations (i.e., <0.1 M) of c-1 in the absence of 6, essentially only A$_3$ reacts with c-1 because intersystem crossing is fast enough to compete with singlet cycloaddition. We may thus associate the initial slopes of Figure 1 with k_{is}^1/k_{qs}^1, so that $k_{qs}^1 = 2 \times 10^6$ l./mol sec.

$$A_3 + 6 \rightarrow A_3$$

$$A_3 + c-1 \rightarrow \text{products and quenching}$$

In addition, a plot of $1/\Phi_2$ vs. $1/c-1$ shows that $k_{is}^1/k_{qs}^1 = 0.53$, or $k_{is}^1 = 2 \times 10^6$ l./mol sec.

$$A_3 + c-1 \rightarrow \text{products and quenching}$$

The similarity of k_{is}^1 and k_{qs}^1 and the increased stereospecificity associated with singlet addition imply a similar rate-determining attack by A$_3$ and A$_5$ on c-1, to form different intermediates B$_1$ and B$_3$. Furthermore, although the stereospecificity which occurs at high [c-1] might suggest a precomplex of A$_3$ and c-1, the fact that the same stereospecificity is observed at low c-1 when 6 is present eliminates such a complex from consideration. Since the n orbital should direct an electrophilic attack of either A$_3$ or A$_5$ on the electron-rich C==C bond of c-1, we propose the shown structures for B$_1$ and B$_3$ immediately after their formation. B$_3$ cannot collapse to products without undergoing spin inversion; as a result, rotation around bond a is sufficiently fast relative to closure that essentially no specificity is observed with respect to formation of 2 and 3. B$_1$, on the other hand, may be an example of a "virtual biradical," i.e., a biradical for which there may be sufficient bonding between the spin-paired but spatially separated electrons so that rotation is hindered or is slow relative to closure, and, as a result, 2 is formed preferentially to 3.

Our results provide, for the first time, evidence of the comparative chemical behavior of a singlet and triplet 1,4 biradical which have similar and deducible geometry. Interestingly, these results imply that spin correlation between the electrons of 1,4 biradicals is sufficiently strong to affect the chemistry of these species.

The Absolute Conformation of Chymotrypsin-Bound Substrates. Specific Recognition by the Enzyme of Biphenyl Asymmetry in a Constrained Substrate

Sir:

We submit an experimental solution to the problem of the conformation of α-chymotrypsin-bound (CT-bound) substrates possessing the natural L-phenylalanine pattern of structure.

Our approach was facilitated by the discovery of an absolute specificity of CT toward a unique conformer of the 2,2'-bridged biphenyl analog (VI) of benzoylphenylalanine methyl ester (BzPheOCH$_3$), synthesized according to I \rightarrow VI.

Treatment of diphenic anhydride with NaBH$_4$ in DMF afforded the lactone I (87%), mp 136–137°.

References:

Nicholas J. Turro, Peter A. Wriede
Department of Chemistry, Columbia University
New York, New York 10027

Received August 21, 1968