DIRECT PHOTOCHEMICAL POPULATION OF TRIPLET DIAZIRINES: COMPARISON OF TRIPLET ENERGIES BY DIRECT EXCITATION AND BY ENERGY TRANSFER

NICHOLAS J. TURRO^{a†}, YUAN CHA^a, IAN R. GOULD^{a‡} and ROBERT A. MOSS^b

^aChemistry Department, Columbia University, New York, NY 10027 (U.S.A.)

^bDepartment of Chemistry, Rutgers, The State University of New Jersey, NJ 08903 (U.S.A.)

(Received August 12, 1986)

Summary

The $S_0 \to T_1$ absorption spectra of diazirine, 3-phenyl-3-chlorodiazirine and two 4-substituted 3-aryl-3-chlorodiazirines have been observed in fluid solution at ambient temperatures. These measurements, which allow direct determination of the triplet energy E_T of the diazirines, are compared with those obtained by plots of sensitizer triplet quenching by diazirine and 3-phenyl-3-chlorodiazirine as a function of triplet sensitizer energy. The corresponding triplet energies are determined to be 73 ± 3 kcal mol⁻¹ and 63 ± 0.5 kcal mol⁻¹ respectively.

1. Introduction

Diazirines have served as an important source of carbenes via thermolysis or photolysis [1]. Although there have been extensive investigations of the photochemical production of carbenes from diazirines [2], there has been relatively little published concerning the nature of the electronically excited states of these interesting small ring heterocycles. Some preliminary investigations have provided evidence that polycyclic azoalkanes [3] and diazirines [4] possess measurable $S_0 \rightarrow T_1$ absorption spectra.

2. Results and discussion

The UV-visible absorption spectra of diazirine (1), 3-phenyl-3-chlorodiazirine (2), 3-(4-methylphenyl)-3-chlorodiazirine (3) and 3-(4-methoxy-

0047-2670/87/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

[†]Author to whom correspondence should be addressed. [‡]Present address: Eastman Kodak Research Laboratories, Rochester, NY 14650, U.S.A.

Fig. 2. $S_0 \rightarrow T_1$ absorption spectra of 2 (about 1.6 M), 3 (about 0.6 M) and 4 (about 0.1 M) in *n*-pentane (cell path length, 10 cm).

TABLE 1
Triplet energies of diazirines studied

Compound	Structure	$E_{\mathbf{T}}$ (kcal mol ⁻¹)	
		$S_0 \to T_1$ transition (nm)	Triplet quenching
1	<"n	77 ± 1 (~ 370)	73 ± 3
2	Z = Z	64 ± 1 (446)	63 ± 0.5
3	CI N	62 ± 1 (454)	_
4	CI N	62 ± 1 (460)	_

3. Conclusion

The very weak absorption bands of the diazirines 1, 2, 3 and 4 in the region 360 - 460 nm are assigned to $S_0 \rightarrow T_1$ transitions. This assignment is consistent with a kinetic analysis of quenching of triplet energy donors by diazirines. The finding that diazirines possess observable $S_0 \rightarrow T_1$ absorption bands potentially provides a method to populate the triplet states of diazirines directly.

4. Experimental details

1 [8], and 2, 3 and 4 (for prior preparations of arylchlorodiazirines, see ref. 9) were prepared as in the literature. Acetonitrile (MCB, OmniSolv), n-pentane (MCB, OmniSolv) and triplet sensitizers (i.e. 1-indanone, xanthone, acetophenone, 4-methoxyacetophenone, 4,4'-dimethoxybenzophenone, benzophenone, 4-phenylbenzophenone, thioxanthone, phenanthrene, 4-phenylacetophenone and 2-naphthyl methyl ketone) were used as supplied. 2-Naphthyl methyl ketone was obtained from Fluka AG and Buchs SG, and the others were obtained from Aldrich.

The UV-visible absorption spectra were obtained on a Perkin-Elmer 559A UV-visible spectrophotometer. The concentrations of the diazirine 1 were determined from UV-visible absorption spectra [5] and the others were determined by weight. The laser flash photolysis system is the same as previously described [10]. The triplet sensitizers were excited at 266 nm (YAG, 8 ns pulse) for 1 as acceptor and at 308 nm (XeCl, 20 ns pulse) for 2 as quencher. Bimolecular quenching rate constants k_q were obtained from the slope of the plots of the observed first-order rate for decay of sensitizer triplet vs. diazirine concentration. The observed quenching rate constants k_q were fitted to eqn. (1) by choosing a suitable triplet energy of acceptor. The triplet energies of sensitizers were obtained from the literature [11]. The diffusion rate $k_{\rm dif}$ in acetonitrile was assumed to be $1.2 \times 10^{10} \, {\rm M}^{-1} \, {\rm s}^{-1}$, which is the largest bimolecular rate constant observed in this experiment.

Acknowledgments

The authors thank the National Science Foundation and the Air Force Office of Scientific Research for their generous support of this research.

References

- M. T. H. Liu, Chem. Soc. Rev., 11 (1981) 127.
 H. M. Frey, Adv. Photochem., 4 (1966) 225.
- D. P. Cox, I. R. Gould, N. P. Hacker, R. A. Moss and N. J. Turro, Tetrahedron Lett., 24 (1983) 5313.
 - I. R. Gould, N. J. Turro, J. Butcher, Jr., C. Doubleday, Jr., N. P. Hacker, G. F. Lehr,