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a b s t r a c t

Hydrogels are important materials for a variety of applications, particularly biomedical
devices, but they generally have poor mechanical properties since they consist predom-
inantly of water held in place by a relatively fragile polymer network. This brief review
describes a few novel methods to control or improve the mechanical properties of hydro-
gels including slide-ring gels, double-network gels, nanocomposite gels, and photoactive
gels. Our goal is to encourage more researchers to be aware of and to exploit these methods.

© 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The materials of interest in this brief review are pri-
marily hydrogels, which are polymer networks extensively
swollen with water [1–5]. We place primary importance on
four methods being developed to improve or control the
mechanical properties of hydrogels. Materials possessing
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biomimetic, collapsed crosslinks which unfold under stress
and then refold reversibly upon retraction of the elastomer
are not considered in this review but may be of interest to
the reader [6–7].

2. Slide-ring gels

Slide-ring gels are topological networks with some sim-
ilarities to linear rotaxane assemblies [8,9]. In these gels,
a number of cyclic molecules are threaded onto a linear
polymer chain and then trapped by placing bulky capping
groups at the two ends of the chain. Some of the cyclics are
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Fig. 1. Sketch of the preparation of a slide-ring gel by connecting cyclics
along the polymer chains to give tetrafunctional sliding junctions. Sim-
ilarly connecting three cyclics would give a functionality of six, and so
on.

then fused together to form mobile cross-links. In the case
of two fused cyclics, the result is a figure-eight structure: ∞
[10–17]. These cross-links are called slide rings, and act like
pulleys for the chains threading through them. The struc-
ture is shown schematically in Fig. 1. The sliding motions
are thought to equalize network stresses, cooperatively.
This gives the gels unusual mechanical properties, in par-
ticular very high deformabilities and degrees of swelling.

An example of a rotaxane used in these studies has a
flexible polymer as the linear chain and !-cyclodextrin
units as the rings [10,13,18]. In some cases, ionic liq-
uids have been used to facilitate their preparation [19]. In
addition to studies of mechanical properties and swelling,
the structures of these materials and their deformation
mechanism [20] have been characterized by small-angle
neutron scattering [11] and small-angle X-ray scattering
[21].

There has long been a quest for materials of this type
[12], and there has also been considerable interest in their
theoretical treatment [22,23].

3. Double-network gels

Another class of hydrogels is generally called “dou-
ble networks” [24–42], but this is an unfortunate choice
of terminology since this name has long been applied
to completely different elastomeric materials. The earlier
use was for elastomers that had first been cross-linked
in the undeformed state, elongated, and then cross-linked
again in the elongated state. Upon retraction, the elas-
tomer showed interesting behavior in that the stretching
and disentangling of chains occurred during the second-
stage cross-linking, with the resulting properties becoming
anisotropic. Theoretical treatment of such materials goes
back to 1960 [43], and research on them has continued to
the present time [44–47].

The new materials going under this name generally
consist of two independently cross-linked networks, one

Fig. 2. A double-network gel in which the filled circles represent cross-
links in the first network structure. In portion a of the figure, the second set
of chains introduced simply reptate through the first network. In portion
b, the second set is also a network, with its cross-links represented by the
filled triangles.

consisting of a rigid polyelectrolyte and the other a flexible
uncharged polymer. These hydrogels apparently exhibit
the best mechanical properties when the first network is
highly cross-linked and the second only lightly cross-linked
(if at all). The two basic structures of double-network gels
are illustrated in Fig. 2. The molar ratio of the second com-
ponent to the first should be a factor as high as ten or more,
which makes them rather different from most interpen-
etrating networks (IPNs) [48]. The enhanced mechanical
properties of these double-network hydrogels are thought
to be a result of the second network preventing cracks
from growing to the point of producing catastrophic failure
of the material. More specifically, this dissipation of crack
energy may be facilitated by the second network appear-
ing as clusters in voids occurring in what is apparently
an inhomogeneous matrix of the first network. There is
expected to be considerable entangling of the two types of
chains in these domains. In some cases, a third component
is used to form a triple network with, for example, uncross-
linked polymer being added to reduce surface friction
[49].

The structures of these materials have been stud-
ied by small-angle neutron scattering (SANS) [26] and
there has been considerable modeling that has been car-
ried out in attempts to establish the structure–property
relationships of these double-network hydrogels [50–52].
There has been some interest in molecular dynamics sim-
ulations [50,51], and modeling of crack formation and
growth [52,53]. In all cases, entanglements are appar-
ently of critical importance [27,54], and one deformation
mechanism includes the formation of voids as well
[55].

Mechanical property studies have included measure-
ments of strengths and fracture energies in compression
and elongation [56,57], hysteresis and the Mullins effect
[28], strain hardening [58], and necking [59]. In the area of
dynamics, there have been reports on friction and lubrica-
tion [25,49], and wear [60]. Their impressive mechanical
properties suggest their use in replacing biological tissues
[61,62]. In many cases, the highly cross-linked polymer has
been poly(2-acrylamido-2-methylpropane sulfonic acid),
and the lightly cross-linked (or uncross-linked) polymer
was polyacrylamide though other systems have been
investigated, including some double networks based on
cellulose [63].
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Fig. 3. A nanocomposite gel in which the filled circles represent attach-
ment points of polymer chains to the surfaces of clay platelets. When
a chain has its ends attached to two different platelets, these platelets
function as planar cross-links.

4. Nanocomposite gels

Nanocomposite gels utilize nanoscopic inorganic mate-
rials such as clay to form crosslinking junctions [64–77].
For these clay nanocomposites, ends of the polymer chains
adsorb strongly on the surfaces of the platelets, as is illus-
trated in Fig. 3, and enough of the chains attach to different
platelets to provide the bridges that constitute a network
structure. The fact that the cross-links are planar sheets of
considerable dimensions and junction functionality some-
how yields unusual mechanical properties, including very
good toughness.

The structures of these nanocomposites have been stud-
ied by dynamic light scattering [78] and by SANS [70,79].
Of particular interest has been the mechanism of formation
of these unusual structures [80]. Mechanical properties of
interest have included necking [81], and sliding frictional
behavior [82]. Of obvious importance have been the effects
of composition [83] in particularly the clay content [68,84].
Some studies have focused on temperature responsiveness
[85], including coil-to-globule transitions [86], and even
porous nanocomposites of this type have been investigated
[87]. The transparency of some of these materials could, of
course, also be of importance in some applications [64].

Also of interest have been the control of cell
cultivation and cell sheet detachment from poly(N-
isopropylacrylamide)/clay hydrogels, and cell adhesion
and proliferation were found to strongly depend on clay
concentration [88]. With regard to optical properties,
birefringence measurements showed that strain and gel
composition had large effects on the optical anisotropies
of these nanocomposite hydrogels in uniaxial deformation
[89]. These types of hydrogels have also been employed
in surface patterning by direct replication with subsequent
changes in pattern size [90]. Their surfaces can also be made
strongly hydrophobic, with abnormally high contact angles
with water [91].

Alternatives to the above use of clay-type fillers would
be to use reactive microgels as cross-linking agents [92] or
to use aligned porous structures to suppress crack devel-
opment [93].

5. Photoactive hydrogels

Light is a truly unique chemical reagent which allows
for exquisite temporal and spatial control over chemical
transformations in a variety of settings. Light can be espe-
cially useful for selective cross-linking, alteration, and/or
degradation of polymer networks [94] or for sensing of a
network’s properties. For example, Ikeda and coworkers
[95] recently utilized the selective cis/trans isomerization
of azobenzenes to photochemically drive a small engine.
The Stoddart group [96] has used this same transforma-
tion to induce reversible hydrogel formation through the
use of supramolecular interactions. The Sottos and Moore
groups [97] recently reported mechanoresponsive mate-
rials which underwent a color change upon mechanical
failure. Green-fluorescent protein (GFP) was incorporated
into hydrogel materials, which were then shown to lose
their fluorescence upon changes in temperature and pH,
presumably due to denaturation of the GFP tertiary struc-
ture. The cornerstone of the microelectronics industry has
been photo-initiated polymer cross-linking and degrada-
tion. Carter and Hawker [98–100] recently reported an
oxygen-insensitive free-radical cross-linking procedure for
the formation of sub-100 nm polymer patterns using thiol-
ene click chemistry.

Surface patterning, as employed in the microprocessor
industry, is spatially selective but not highly chemoselec-
tive, e.g. the cross-linking and/or degradation processes
can occur anywhere along the precursor polymer chains.
Recent work which utilizes light in the context of polymer
networks pertains to molecule-specific photochemistry
which typically relies on the following principle: if one
chooses an appropriate chromophore which absorbs a
specific wavelength, and polymers which do not absorb
in that region, then it is possible to selectively address
functionalities within a polymer network and thereby
perform degradation, isomerization, or cross-linking at
specific locations within that material. For example,
Leblanc and coworkers reported the photocross-linking of
polyethylene glycol (PEG) star polymers which possessed
anthracene groups at their termini. Selective irradiation of
the anthracene moieties with 365 nm light led to hydro-
gel formation by dimerization of the anthracene groups via
4 + 4 cycloaddition. The authors also showed degradation of
the gels by irradiation with 254 nm light [101].

Light has perhaps been most exploited recently
for site-selective degradation of cross-linked polymer
materials. The Shoichet group pioneered the use of photo-
protected moieties bound within hydrogels [102]. Using
a nitrobenzyl-protected cystein the authors were able to
produce patterns of free cystein within agarose hydro-
gels. These cysteins were then chemoselectively addressed
using biologically active peptides for the study of neurite
outgrowth. The same group later expanded this approach
to three-dimensional patterns using two-photon pattern-
ing techniques along with coumarin-capped cysteins [103].
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Johnson et al. [104,105] reported the synthesis of
photodegradable cross-linked poly(tert-butyl acrylate)
materials using copper-catalyzed azide-alkyne cycloaddi-
tion click chemistry. These gels possessed photocleavable
nitrobenzyl groups at precise locations within the net-
works and could be degraded site-selectively to give
soluble products of defined size and structure. Further-
more, these materials could be converted to poly(acrylic
acid) materials by acidic hydrolysis to give photodegrad-
able hydrogels.

The Anseth group [106,107] recently built on upon
the work of Shoichet and Johnson to generate hydrogel
materials which possessed both chemical and mechanical
patterns through degradation. In their most recent work,
the authors were able to control the migration of stem cells
within the hydrogel network via temporal and spatial con-
trols over photodegradation. These materials show great
promise as tissue engineering scaffolds.

These examples show the utility of light as a reagent for
the preparation of functional, stimuli-responsive materi-
als through judicious choice of chromophores and polymer
materials.

6. Conclusions

Techniques that have already been developed and are
being refined are giving very impressive improvements in
the mechanical properties of hydrogels and will certainly
expand the range of applications of these materials. The
same can be said of some of the new types of photoac-
tive materials. Also, there is no obvious reason why at least
some of these methods could not be used to improve the
properties of other types of gels, specifically the wide vari-
ety of “organo-gels” (in which an organic solvent is the
swelling component).
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