Review

Theory and spectroscopy of an incarcerated quantum rotor: The infrared spectroscopy, inelastic neutron scattering and nuclear magnetic resonance of H₂@C₆₀ at cryogenic temperature

Salvatore Mamone a, Judy Y.-C. Chen b, Rangeet Bhattacharyya a, Malcolm H. Levitt a, Ronald G. Lawlerc, Anthony J. Horsewill d, Toomas Rõõme e, Zlatko Bačić f, Nicholas J. Turrob

a School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK
b Department of Chemistry, Columbia University, New York, NY 10027, USA
c Department of Chemistry, Brown University, Providence, RI 02912, USA
d School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
e National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
f Department of Chemistry, New York University, New York, NY 10003, USA

Contents

1. Introduction ... 938
2. Quantum dynamics of H₂@C₆₀ ... 940
3. Populations of the energy levels of ortho-H₂ and para-H₂ at thermal equilibrium ... 942
4. IR spectroscopy of H₂@C₆₀ at low temperatures .. 942
5. Inelastic neutron scattering of H₂@C₆₀ at low temperatures .. 944
6. Nuclear magnetic resonance of H₂@C₆₀ at low temperatures .. 945
7. Conclusions ... 947
8. A coda .. 947
Acknowledgements .. 948
References ... 948

A B S T R A C T

The supramolecular complex, H₂@C₆₀, represents a model of a quantum rotor in a nearly spherical box. In providing a real example of a quantum particle entrapped in a small space, the system cuts to the heart of many important and fundamental quantum mechanical issues. This review compares the predictions of theory of the quantum behaviour of H₂ incarcerated in C₆₀ with the results of infrared spectroscopy, inelastic neutron scattering and nuclear magnetic resonance. For H₂@C₆₀, each of these methods supports the quantization of translational motion of H₂ and the coupling of the translational motion with rotational motion and provides insights to the factors leading to breaking of the degeneracies of states expected for a purely spherical potential. Infrared spectroscopy and inelastic neutron scattering experiments at cryogenic temperatures provide direct evidence of a profound quantum mechanical feature of H₂ predicted by Heisenberg based on the Pauli principle: the existence of two nuclear spin isomers, a nuclear spin singlet (para-H₂) and a nuclear triplet (ortho-H₂). Nuclear magnetic resonance is capable of probing the local lattice environment of H₂@C₆₀ through analysis of the H₂ motional effects on the ortho-H₂ spin dynamics (para-H₂, the nuclear singlet state, is NMR silent). In this review we will show how the information obtained by three different forms of spectroscopy join together with quantum theory to create a complementary and consistent picture which strikingly shows the intrinsically quantum nature of H₂@C₆₀.

1. Introduction

The supramolecular complex H₂@C₆₀ (Fig. 1), represents a felicitous marriage of the simplest molecule of all, H₂, with one of the most symmetric and intellectually charming molecules, the fullerene C₆₀. The profound quantum properties and nature of H₂
are concealed by its apparent simplicity. For example, the prediction of the existence of two distinct allotropes (isomeric forms of a single element) of molecular hydrogen was an early triumph of quantum mechanics [1]. The quantum basis for the two forms is as follows: \(\text{H}_2 \) is composed of two sets of identical spin \(\frac{1}{2} \) particles, two protons and two electrons. Both electrons and protons are therefore fermions. The Pauli principle requires the total molecular wave-function of \(\text{H}_2 \) to be antisymmetric for exchange of the space and spin coordinates of the two indistinguishable protons. The proton spins can combine in a symmetric way to give a total nuclear spin of 1 or in an antisymmetric way to give a total nuclear spin of 0. In a diatomic molecule, with no net electronic angular momentum and spin, the spatial symmetry for exchange of the nuclei is dictated by the integer quantum number \(j \).

As a result, in the electronic ground state, para-\(\text{H}_2 \) (antisymmetric singlet spin function) is required to be associated with rotational functions that are symmetric \((j = 0, \text{even}) \), and ortho-\(\text{H}_2 \) (symmetric triplet spin function) is required to be associated with rotational wavefunctions that are antisymmetric \((j = \text{odd}) \). The two hydrogen allotropes have distinct physical and chemical properties. At ordinary temperatures hydrogen at equilibrium is a statistical mixture of triplet ortho-\(\text{H}_2 \) and singlet para-\(\text{H}_2 \). In general the measurable quantities of \(\text{H}_2 \) are determined by the relative abundance of the ortho and para species which, in case of slow interconversion, depends on the history of the sample. Farkas’ book [2] is an excellent introduction to the basic theoretical aspects and early experimental observations of spin isomerism and spin interconversion in molecular hydrogen isotopomers (including the ortho and para forms of \(\text{D}_2 \)).

The entrapment of \(\text{H}_2 \) in the confining potential of \(\text{C}_{60} \) is determined by the supramolecular non-covalent interactions between the \(\text{H}_2 \) molecule and the carbon atoms of the wall of \(\text{C}_{60} \). The confinement of \(\text{H}_2 \) inside \(\text{C}_{60} \) leads to quantization of the three translational degrees of freedom associated with the centre of mass motion of \(\text{H}_2 \). The two lowest rotational levels of free \(\text{H}_2 \) are separated by \(\sim 120 \text{ cm}^{-1} \). These features lead to the expectation that the motional dynamics of \(\text{H}_2 \) inside \(\text{C}_{60} \) will be characterized by highly quantum mechanical behaviour. As a result, important issues for theory and experiment are: (1) What is the quantitative extent of quantization of the translational degrees of freedom of \(\text{H}_2 \)@\(\text{C}_{60} \)? (2) What is the magnitude of the coupling of the rotational and translational degrees of freedom of \(\text{H}_2 \) in \(\text{C}_{60} \)? (3) How good is the agreement of theory and experiment? (4) How can spectroscopic measurements provide direct or indirect information on issues 1–3?

In this review we address the above issues by describing the current state of theory of the potential energy surface of \(\text{H}_2 @ \text{C}_{60} \) and the predictions from theory on the quantization of translational degrees of freedom, the coupling of translational and rotational degrees of freedom and the removal of degeneracies of levels that are expected for a perfect spherical potential. We then describe how infrared spectroscopy, inelastic neutron scattering and nuclear magnetic resonance spectroscopy, all at temperatures near 4 K, provide a means of examining the validity of the theory through measurement of energy shifts and energy splittings. In addition, we show how these methods provide a splendid direct means of validating the existence of the ortho-\(\text{H}_2 \) and para-\(\text{H}_2 \) and the slowness of interconversion of these two Pauli spin isomers.

The soccer ball shaped \(\text{C}_{60} \) is the prototype of carbon fullerene molecules forming stable closed structures with nanometer sizes. More precisely \(\text{C}_{60} \) has the form of a truncated icosahedron and belongs to the highest molecular symmetry point group \(I_h \), thereby realizing the closest approximation to a spherical molecule. An important question that will be discussed in this review is how does the small deviation from perfect spherical symmetry modify the quantum nature of \(\text{H}_2 \) inside the closed structure, i.e., does the small reduction in symmetry cause measurable breaking of degeneracies that are predicted in the perfect spherical model?

With its diameter of approximately 7 Å, it is natural to consider the possibility of inserting atoms and small diatomic molecules inside the \(\text{C}_{60} \) cavity. The first endohedral compounds were obtained by inserting noble gas atoms in \(\text{C}_{60} \) under extreme temperature and pressure conditions [3–7]. However, only a small fraction of the fullerenes, in the order of \(10^{-3} \), is occupied through this method. Komatsu and co-workers paved the way to the production of \(\text{H}_2 @ \text{C}_{60} \) in macroscopic quantities through a completely synthetic organic approach [8–10]. In a series of controlled reaction steps they first produced through organic synthesis a large orifice in \(\text{C}_{60} \), then inserted \(\text{H}_2 \) through the orifice at high temperature and pressure and finally “sewed” the hole up back to \(\text{C}_{60} \) while retaining the hydrogen molecule inside. Almost 100% of the fullerenes were filled with \(\text{H}_2 \) at the end of this organic synthetic manipulation, now known as molecular surgery. In addition to \(\text{H}_2 \), mixtures of endohedral fullerenes with a predetermined ratio of \(\text{H}_2 \), HD and D\(_2\) can be prepared. Another interesting class to be mentioned here is constituted by endohedral metallofullerenes, in which a fullerene cage encapsulates clusters that would not be stable otherwise, in particular trimetallnitride complexes inside \(\text{C}_{60} \) [11–13] and \(\text{C}_2 \text{Sc}_2 @ \text{C}_{84} \) [14,15] which is a remarkable example of planar quantum rotor.

The availability of high purity \(\text{H}_2 @ \text{C}_{60} \) in relatively large amounts (milligrams to grams) greatly expanded the possible applications and fundamental research related to the quantum behaviour of endohedral fullerene complexes. The quantum dynamics of the trapped \(\text{H}_2 \) is expected to be affected by the confinement in at least two important ways. First, the translational motion associated with the molecular centre of mass becomes unambiguously quantized because of the confinement in the nanoscopic host \(\text{C}_{60} \). Thus, the continuum of translational states imposed on the purely rotational states characterized by the energy levels of “free” \(\text{H}_2 \) split into sets of translational sublevels, all but the first of which, possess various degrees of degeneracies. The small mass of hydrogen combined with the small size of the internal void space of \(\text{C}_{60} \) and the weak non-covalent bonding between the guest and host, implies large energy spacings and sparseness of the quantized translational and rotational levels. Second, confinement induced couplings between the translational and the rotational motion complicate further the structure of the energy levels: the rotational–translational sublevels split and shift with patterns that reflect the symmetry and the energy related to the size of the confinement.

The high, nearly spherical symmetry of \(\text{C}_{60} \) is helpful, but not essential, in reducing the mathematical complexity of the computational problem. Thus, the theoretical analysis is simplified and the interpretation of spectroscopic data in terms of the energy of the transitions between the quantized modes of the confined hydrogen becomes apparent. On the other hand, the actual reduction of spherical symmetry due to distortions of the \(\text{C}_{60} \) for any reason...
implies a breakdown of degeneracies and modification of the subtle details of the quantum nature of the incarcerated H$_2$. All of the issues described in the previous paragraphs will be discussed in this review.

As discussed above, infrared spectroscopy (IR), inelastic neutron scattering (INS) and nuclear magnetic resonance (NMR) all probe the quantum dynamics of the H$_2$ inside C$_{60}$ at different energy and time scales according to their specific selection rules. Studies at cryogenic temperatures (temperatures a few degrees from absolute 0 K) allow measurements essentially uncomplicated by significant populations of excited levels and therefore provide a clearer basis for the interpretation of results. IR and INS experiments are sensitive to the energy level structure of the spatial modes of the incarcerated H$_2$. Variation in the strength of the H–H interaction, in the average bond length via changes in the vibrational frequency and in the rotational constant (as compared to the free H$_2$), quantization of the translational modes, and translational rotational couplings are directly observed in IR and INS spectra. NMR detects only the spin 1 ortho-H$_2$ isomer since para-H$_2$ $(I = 0)$ is NMR silent. However, NMR can be very sensitive to minute variation of the environment (lattice) of a H$_2$@C$_{60}$ molecule. Indeed, measurements of spin relaxation rates at cryogenic temperatures, encode information about the local environment and rotational dynamics as sensed by hydrogen with odd rotational quantum numbers j.

2. Quantum dynamics of H$_2$@C$_{60}$

The quantum dynamics of H$_2$ encapsulated in a fullerene depends on the non-covalent (supramolecular) interaction between the two molecules. At a higher order level, the balance between the attractive and repulsive part of the dispersive interaction between H$_2$ and the carbon atoms of the C$_{60}$ inner wall dictates the effective motion of the two bonded and confined hydrogen nuclei. An interesting question is which model is more realistic in describing H$_2$@C$_{60}$: a freely rotating H$_2$ interacting only slightly with the walls of the carbon cage or an H$_2$ molecule tightly wedged inside the C$_{60}$? This question was addressed by Cross [16] well in advance of the availability of H$_2$@C$_{60}$. Ab initio computation of the potential electronic surface (PES) at the level of the Hartree-Fock method and the 6-31G(d,p) basis set indicated that H$_2$ should rotate freely inside the almost isotropic potential generated by C$_{60}$ (Fig. 2). The calculated potential was found, however, to have a small dependence on the H$_2$ orientation that acts as a torque pushing the hydrogen toward a parallel orientation to the fullerene surface. The parabolic profile of the confining potential suggests the validity of an analysis of the quantum dynamics of H$_2$@C$_{60}$ in terms of eigenfunctions of a free rotating molecule confined in an almost isotropic potential. More accurate quantum calculations have mainly focused in the evaluation of stabilization energies [17]. To date high-level computations of PES for endohedral fullerene compounds are not available.

Effective potentials are extremely useful, since it is computationally feasible to solve exactly the five dimensional (5D) Schrödinger equation of a rigid hydrogen molecule confined in nanoscopic structures [18]. The difficulty of finding a reliable PES from first principles can be circumvented assuming that the cage–hydrogen interaction can be obtained as a sum of a two-body interaction $V_{C–H}$ over all the carbon atoms [19]. A Lennard–Jones (LJ) potential is then used to describe the dispersion interaction between the carbon atom and the hydrogen molecule. The energy level patterns resulting from the translation–rotation coupling which were computed on the PESs constructed using the standard two-site LJ pair potentials [19] were observed in the infrared spectra of H$_2$@C$_{60}$ [20]. However, the agreement between the calculated and measured excitation energies was not quantitative.

On the other hand, a three site potential, which incorporates one additional parameter, has been found to describe the interaction between a carbon atom and the hydrogen molecule much better: the carbon atom interacts with the molecular charge distribution which is located not exclusively at the nuclear positions but also in the intermediate space between the hydrogen atoms. Importantly, this improved potential reproduces accurately the frequencies of six of the observed IR peak positions in ortho-H$_2$@C$_{60}$ and para-H$_2$@C$_{60}$ IR spectra [21].

The potential energy surface parameters, spectroscopically optimized for H$_2$@C$_{60}$, were successfully used to analyze the quantum dynamics of H$_2$ confined in the anisotropic fullerene C$_{70}$ [20,22]. Not surprisingly, given the weak anisotropy, radial and angular, of the interaction between H$_2$ and C$_{60}$, the solutions of the 5D Schrödinger equation, computed from the optimized potential, revealed that a rational interpretation of the H$_2$@C$_{60}$ dynamics can be understood in terms of a quantum rotor confined in an isotropic harmonic potential, whose eigenstates can be labelled by the set of the quantum numbers v, j, n, l, m_j [19,20]. The integer $v = 0, 1, \ldots$ represents the vibrational quantum number. The angular momentum l associated with the rotation of H$_2$ with respect to its centre of mass is quantized according to $|l| = \sqrt{I + 1} \hbar$ with $j = 0, 1, \ldots$. In the absence of a spin catalyst, or higher order interactions of H$_2$ with the cage which would lower its symmetries [23,24], matrix elements connecting ortho and para states are null, justifying the net separation of the Hamiltonian treatment for the two spin isomers. The quantization of the centre of mass motion is described by the two quantum numbers n [25], which counts the number of translational excitations 0, 1, \ldots and l, which expresses the quantization of the H$_2$ centre of mass angular momentum $|l| = \sqrt{I + 1} \hbar$. For a given n, the angular momentum number may assume positive integer values $l = n, n - 2, \ldots$ until 1 or 0, depending on n being even or odd, respectively. The quantum numbers λ and m_λ are related to the spherical symmetry of the system and define the transformation properties of the combined translation–rotation spatial wave function under rotation. λ is associated with the total angular momentum $\lambda = l + j$ and can assume integer values restricted to $|l-j| \leq \lambda \leq l+j$ and $m_\lambda = -\lambda, \ldots, \lambda \lambda$ is the projection along any quantization axis. In a purely harmonic potential the role of λ in labelling energy levels is immaterial. In H$_2$@C$_{60}$ the small size of the confinement induces translation–rotation couplings that lift the
pled to each other: the H2 has to rotate around its centre of mass (wavefunction on the distance R from the origin of C60 and angular dependence. The two angular momenta, quantum numbers tiplet according to the irreducible representation of the group Ih [25]: the number of translational excitations n and the orbital angular momentum quantum number l. n describes the dependence of H2 translational wavefunction on the distance R from the origin of C60 and l describes its angular dependence. The two angular momenta, quantum numbers j and l, are coupled to each other: the H2 has to rotate around its centre of mass (j-motion) while moving along trajectories which pass through A and B (l-motion), resulting in a new quantum number l \(\lambda\).3

degeneracy of the translational levels. The energy levels in H2@C60 can roughly be obtained from

\[E(v, j, n, \lambda) = (v + \frac{1}{2}) \omega_v + (n + \frac{3}{2}) \omega_n + B_l(J + 1) + c(l, j, \lambda) \] (1)

in units of reduced Planck constant \(\hbar\). Here \(\omega_v\) is the vibrational quantum of energy, \(\omega_n\) is the translational quantum of energy, \(B_l = B_T - \alpha_v(v + 1/2)\) is the rotational constant in the state \(v\) and \(\alpha_v\) represents a vibration–rotation correction. The last term is proportional to the translation–rotation coupling \(V_{T-R}\) through a coefficient \(c(l, j, \lambda)\) that gives the pattern of the sublevels. Such a coefficient depends on the detailed spherical form of the translation–rotation coupling. The degeneracy of the level with a given set of quantum numbers is \(g = 2\lambda + 1\). A pictorial representation of the relationships between the quantum numbers and the various degrees of freedom in H2 and H2@C60 is given in Fig. 3.

The description given above is oversimplified to some extent, but it can be used as a guide in the interpretation of the observed spectra. First, the carbon framework is treated as rigid and non-rotating. This is justified at 4 K as the vibrational frequencies span over the range 260–1575 cm\(^{-1}\) [26], well above the \(k_B T\) and the rotations of C60 are frozen out at temperatures below about 100 K as shown by NMR experiments, see Section 6. Second, realistic confining potentials must include anharmonic terms that imply a non uniform spacing between translational excitations. Third, higher order corrections: vibration–rotation couplings, centrifugal distortion and vibration–translation coupling are not included in Eq. (1). Fourth, the real icosahedral symmetry of C60 reduces the 2\(\lambda + 1\) spherical degeneracy and levels with \(\lambda \geq 3\) split in a multiplet according to the irreducible representation of the group Ih [19]. The effect is tiny and the resulting energy gaps in the multiplet are small. Tables 1 and 2 report the energy levels computed via exact numerical solution of the fully coupled 5D Schrödinger equation for the translational and rotational degrees of freedom of para- and ortho-H2@C60 in the first excited vibrational state \(\nu = 1\) using a spectroscopically based three-site potential and the icosahedral symmetry of C60 [21].

Table 1

<table>
<thead>
<tr>
<th>(\Delta E/c) (cm(^{-1}))</th>
<th>g</th>
<th>(\langle l\rangle)</th>
<th>n</th>
<th>(\langle j\rangle)</th>
<th>j</th>
<th>(\langle c(j)\rangle)</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1</td>
<td>0.70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.999</td>
<td>0</td>
</tr>
<tr>
<td>1.83</td>
<td>3</td>
<td>0.87</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>2.07</td>
<td>3</td>
<td>0.87</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0.993</td>
<td>0</td>
</tr>
<tr>
<td>3.00</td>
<td>5</td>
<td>0.99</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0.991</td>
<td>2</td>
</tr>
<tr>
<td>4.09</td>
<td>1</td>
<td>0.96</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.997</td>
<td>0</td>
</tr>
<tr>
<td>5.07</td>
<td>5</td>
<td>0.87</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>6.41</td>
<td>4</td>
<td>0.87</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0.991</td>
<td>0</td>
</tr>
<tr>
<td>7.53</td>
<td>3</td>
<td>0.87</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.991</td>
<td>1</td>
</tr>
<tr>
<td>8.18</td>
<td>2</td>
<td>0.87</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.991</td>
<td>0</td>
</tr>
<tr>
<td>9.56</td>
<td>4</td>
<td>0.86</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0.988</td>
<td>3</td>
</tr>
<tr>
<td>10.96</td>
<td>3</td>
<td>1.03</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0.987</td>
<td>3</td>
</tr>
</tbody>
</table>

Reprinted with permission from reference [21], Copyright 2009, American Institute of Physics.

Table 2

<table>
<thead>
<tr>
<th>(\Delta E/c) (cm(^{-1}))</th>
<th>g</th>
<th>(\langle l\rangle)</th>
<th>n</th>
<th>(\langle j\rangle)</th>
<th>j</th>
<th>(\langle c(j)\rangle)</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.09</td>
<td>3</td>
<td>0.70</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.999</td>
<td>0</td>
</tr>
<tr>
<td>2.87</td>
<td>3</td>
<td>0.87</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>2.94</td>
<td>3</td>
<td>0.87</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>4.05</td>
<td>1</td>
<td>0.86</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>4.84</td>
<td>5</td>
<td>1.00</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.999</td>
<td>2</td>
</tr>
<tr>
<td>4.94</td>
<td>4</td>
<td>0.99</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.998</td>
<td>2</td>
</tr>
<tr>
<td>4.94</td>
<td>5</td>
<td>0.99</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.998</td>
<td>2</td>
</tr>
<tr>
<td>4.96</td>
<td>3</td>
<td>0.98</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.999</td>
<td>0,2</td>
</tr>
<tr>
<td>5.24</td>
<td>2</td>
<td>0.95</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.999</td>
<td>0,2</td>
</tr>
<tr>
<td>6.51</td>
<td>4</td>
<td>0.70</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0.999</td>
<td>0</td>
</tr>
<tr>
<td>6.58</td>
<td>3</td>
<td>0.70</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0.999</td>
<td>0</td>
</tr>
<tr>
<td>6.94</td>
<td>3</td>
<td>1.10</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0.999</td>
<td>3</td>
</tr>
<tr>
<td>6.95</td>
<td>4</td>
<td>1.10</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0.999</td>
<td>3</td>
</tr>
<tr>
<td>7.07</td>
<td>3</td>
<td>1.05</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0.999</td>
<td>3</td>
</tr>
<tr>
<td>7.08</td>
<td>5</td>
<td>1.09</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0.995</td>
<td>3</td>
</tr>
<tr>
<td>7.10</td>
<td>5</td>
<td>1.08</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.999</td>
<td>1,3</td>
</tr>
<tr>
<td>7.37</td>
<td>3</td>
<td>1.05</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>7.54</td>
<td>5</td>
<td>1.04</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.993</td>
<td>1,3</td>
</tr>
<tr>
<td>7.93</td>
<td>3</td>
<td>1.03</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>8.36</td>
<td>3</td>
<td>0.87</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>8.40</td>
<td>4</td>
<td>0.87</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>8.44</td>
<td>4</td>
<td>0.86</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>8.44</td>
<td>5</td>
<td>0.86</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>8.46</td>
<td>5</td>
<td>0.86</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0.994</td>
<td>1</td>
</tr>
</tbody>
</table>

Reprinted with permission from reference [21], Copyright 2009, American Institute of Physics.

Fig. 3. Confinement of H2 inside C60 introduces new quantum numbers, n, and \(\lambda\). For free H2, the quantization of the vibrational \(v\), and rotational, j, degrees of freedom is apparent. Both motions occur with respect to the centre of mass of H2 (left picture). For confined H2 (right picture), the translational degrees of freedom are quantized and are described by two additional quantum numbers of the 3D isotropic harmonic oscillator [25]: the number of translational excitations n and the orbital angular momentum quantum number l. n describes the dependence of H2 translational wavefunction on the distance R from the origin of C60 and l describes its angular dependence. The two angular momenta, quantum numbers j and l, are coupled to each other: the H2 has to rotate around its centre of mass (j-motion) while moving along trajectories which pass through A and B (l-motion), resulting in a new quantum number l \(\lambda\).3

\(\Delta E/c\) (cm\(^{-1}\)) is the excitation energies relative to the translation rotation para-H2 ground-state energy in the ν = 1 state, \(\langle l\rangle\) is the degeneracy of the level. \(\langle c(j)\rangle\) is the mean value of the distance between the centre of mass of H2 and C60 in atomic units. The quantum numbers n, j, l define the state in terms of the harmonic basis as reported in the text. The effect of translation rotation couplings is evident. \(c(j)\) is the contribution of the dominant rotational basis function of quantum number j. The closely spaced levels, whose energies are in italics, arise from the lifting of the 2\(\lambda + 1\) level degeneracy of the spherical approximation by the icosahedral potential of C60 [21].
In conclusion, in H$_2$@C$_{60}$ the encased molecule–cage interaction can be separated into two parts: a “large” spherically symmetric potential and a residual “small” icosahedral potential. Experimental and theoretical calculations, reported in this review, prove that the dynamics of the endohedral hydrogen is mainly determined by the spherical part of the potential. The coupling between the motion of the endohedral molecule and the rotation of the cage is weak because of the small icosahedral part of the potential compared to the distance between the translation and rotation levels of H$_2$. The interpretation of the levels of the endohedral hydrogen in terms of the quantum numbers of the free rotor coupled to harmonic oscillator and the effect of symmetry reduction are evident.

3. Populations of the energy levels of ortho-H$_2$ and para-H$_2$ at thermal equilibrium

Ortho-H$_2$ and para-H$_2$ are metastable allotropes of molecular hydrogen with rates of interconversion that are extremely slow in the absence of a spin catalyst. In the (hypothetical) absence of external catalysts, H$_2$@C$_{60}$ spin conversion could still occur because of mixing with excited electronic states or because of interactions that result in small differences in local magnetic fields at the two proton positions. One such mechanism might involve interactions with natural-abundance 13C nuclei in the cage (about 48% of C$_{60}$ molecules contain at least one 13C nucleus). Nevertheless, both mechanisms lead to such low rates that essentially no interconversion for H$_2$@C$_{60}$ has been unambiguously observed in any experiment so far in the absence of a deliberately added spin catalyst. After its preparation, H$_2$@C$_{60}$ near room temperature contains molecular hydrogen spin isomers in a ratio that is determined by the initial balance of H$_2$ allotropes when the complex is prepared. Since the hydrogen capture step in the synthesis is performed at room temperature or above, the normal ortho to para ratio of encapsulated H$_2$ molecules is 3:1, although methods for enrichment of para-H$_2$@C$_{60}$ have been recently devised [27,28]. Once H$_2$@C$_{60}$ is prepared with a fixed ortho to para ratio the two isomers act as independent thermal reservoirs. At a given temperature the fast thermalization of the non-nuclear spin degrees of freedom in molecular hydrogen ensures that the quantum levels are populated according to the Boltzmann distribution of each of the two allotropic species, but the two allotropes do not equilibrate with each other. Fig. 4 describes the equilibrium para-H$_2$ and ortho-H$_2$ fractional population of the energy levels for temperatures below 80 K as obtained from the energies and degeneracies in Tables 1 and 2. There is a subtlety here because the energies of the spatial eigenfunctions are calculated for the first excited vibrational state $\nu=1$. It is supposed that the differences with the corresponding energies for the ground vibrational state $\nu=0$ are small. Indeed, the plotted distributions are insensitive to the fine details in the energy level positions. They are related to the large translational and rotational energy gaps compared to the thermal energy k_BT. It is evident that only the vibrational–rotational–translational ground states are populated below 30 K.

The temperature effect upon spectroscopy is threefold. First, spectra at low temperatures are less congested because only the ground ortho-H$_2$ and para-H$_2$ states are macroscopically populated: the observed transitions involve only the ground state levels as initial states. Second, for the same reason the intensity of the lines is higher, resulting in enhanced spectroscopic sensitivity. Third, the rotational dynamics of the cage is frozen, as described in the NMR Section 6, allowing interpretation of the experiments in terms of modes of H$_2$ in a fixed geometry.

4. IR spectroscopy of H$_2$@C$_{60}$ at low temperatures

The IR spectroscopy of H$_2$@C$_{60}$ at temperatures near 4 K clearly shows the fingerprints of the quantization of the H$_2$ spatial degrees of freedom. The IR absorption peaks of H$_2$@C$_{60}$ at 6 K are located in 4 narrow regions between 4060 and 4800 cm$^{-1}$ as shown in Fig. 5. The observed lines can be described as combination of the forbidden vibration band, $\Delta\nu=1$, with the IR allowed translation mode. At first sight it may be surprising that a homonuclear diatomic molecule like hydrogen is IR active at all. However, the interactions of H$_2$ with atom or molecules can produce small distortions of the molecular charge distribution so inducing a small dipole moment. For example, IR spectroscopy of H$_2$ in the condensed phase [29] and intercalated in the voids among the cages in crystalline C$_{60}$ [30–32] has been reported. In a qualitative picture for H$_2$@C$_{60}$, the carbon π orbitals push the hydrogen electronic cloud to the centre of the C$_{60}$ cage, while nuclei move back and forth so creating a dipole moment modulated by the nuclear motion. The instantaneous dipole moment is a function of the hydrogen configuration coordinates inside C$_{60}$. The rigorous treatment requires ab initio evaluation of three main induction mechanisms [33]: dispersion, electron exchange, and electric multipolar, in a similar way to that done for H$_2$–noble gas systems [34,35]. A quantitative analysis of the H$_2$ induced IR activity can be performed by expanding the dipole moment in terms of appropriate spherical multipoles [32,36]. The selection rules for IR spectroscopy on H$_2$@C$_{60}$ follow from the vectorial nature of the dipole moment. They are clearly expressed in the coupled spherical basis defined by the l, j, λ quan-
The IR spectra shown in Fig. 6 all originate in the lowest energy state of each of the allotropes, since at 6 K none of the higher states are significantly occupied. The two “weak” lines in panel (a) of Fig. 5 represent the pure H–H stretching $\nu=0 \rightarrow \nu=1$ transition for para-H$_2$ (4071 cm$^{-1}$) and ortho-H$_2$ (4065 cm$^{-1}$). The separation between these two lines originates from vibration–rotation couplings, since the two species correspond to different values of j. The fundamental vibrational frequency in both allotropes is redshifted with respect to the gas phase by 90 cm$^{-1}$ implying that the effective hydrogen-fullerene potential is attractive at the centre of the cage [37] making an effective spring connecting the two protons softer. The IR activity of the pure vibrational mode is a result of medium-induced symmetry breaking effects, in this case in the solid state. Group theory arguments imply that no pure vibrational transitions are allowed within the electric dipole approximation by any of the induction mechanisms for isolated H$_2$@C$_{60}$ even considering the real icosahedral symmetry of H$_2$@C$_{60}$. The next set of four lines between 4240 and 4261 cm$^{-1}$, reported in panel (b), represents a pure translational sideband: a translational quantum is excited beside the vibrational one. The fundamental translational excitation in the excited vibrational state is then approximately 184 cm$^{-1}$ (22.8 meV). The Q(0) line corresponds to a para transition while the three Q(1) lines correspond to ortho transitions. The splittings in the Q(1) line are a direct evidence of translation–rotation coupling. In the presence of translational rotational couplings, the energy level with $n=1, l=1$ is split in three levels with $\lambda=1, 2, 0$ which are terminal states for allowed IR transitions from the ground state according to the selection rules stated above. The ordering of the levels depends on the specific form and on the sign of the translation–rotation coupling term [20]. Finally the two panels (c and d) show para and ortho S lines where two rotational quanta are excited beside the translational and vibrational ones. The separation from the Q lines in panel (b) is approximately defined by the value of the rotational constant B_1 according to Eq. (1): the para line $S(0)$ is 68 cm$^{-1}$ and the ortho one is 108 cm$^{-1}$ in frequency than the Q lines. The rotational constant of H$_2$ is reduced to $B_r = 59.3$ cm$^{-1}$, with $\alpha_r = 2.98$ cm$^{-1}$ [20] compared to the gas phase values $B_g = 60.85$ cm$^{-1}$ and $\alpha_g = 2.99$ cm$^{-1}$ [38]. This corresponds to a 1.3% increase in the proton–proton distance. The remaining shifts, 8 cm$^{-1}$ for the S(0) line and 4 cm$^{-1}$ for the S(1) line, come from the translation–rotation term $c(l, j, \lambda)$ in Eq. (1) which affects differently the final rotational states that have $l=1, j=2, \lambda=1$ and $l=1, j=3, \lambda=2$, respectively.

The IR spectroscopy of H$_2$@C$_{60}$ provides direct access to the host-cage potential and molecular parameters. Lines are narrow
because of the homogeneous distribution of the confinement potential and H$_2$ molecules are isolated from each other by C$_{60}$ molecules. Translational excitation energy, translation–rotation coupling, internuclear distance and vibrational strength can be directly extracted from the analysis of the low temperature IR spectra. High resolution spectra were a stimulus to improve the C–H$_2$ pair interaction as discussed above for the theory of the H$_2$@C$_{60}$ system. Finally, the ortho to para ratio can be estimated directly by comparing the observed line intensities with the theoretically predicted ones. In conclusion, quantum theory of H$_2$@C$_{60}$ provides an excellent framework for the interpretation of the infrared spectrum of H$_2$ incarcerated in the C$_{60}$ host. The distinct, non-interconverting nature of para-H$_2$ and ortho-H$_2$ are directly and clearly demonstrated by analysis of the spectra, as are the coupling of quantized translation and rotation degrees of freedom.

5. Inelastic neutron scattering of H$_2$@C$_{60}$ at low temperatures

Neutron scattering does not involve electromagnetic interactions with matter. Rather it relies on the nuclear interaction between a beam of neutrons and the nuclei in the molecules that causes transitions between molecular energy levels. Inelastic neutron scattering (INS) experiments involve detecting variations in the energy and momentum of the neutron beam when it interacts with the sample. Intensity plots of the scattered neutrons versus neutron energy absorbed or neutron energy gained resemble typical electromagnetic spectra linking quantum states of the system under study (Fig. 7). Indeed, the signals produced in INS spectra correspond to the energy level difference between two quantum states, as in all forms of molecular spectroscopy. The INS spectra show energy loss signals corresponding to transitions where neutrons are slowed down and lose energy by transfer to the H$_2$ system and energy gain signals corresponding to processes in which the H$_2$ molecules give up some energy to the scattered neutrons. Due to the weakness of the effective neutron interaction with nuclei in scattering processes, INS is a relatively insensitive technique requiring a relatively large amount of H$_2$@C$_{60}$ (∼100 mg or more) compared to the amount needed for IR and NMR that give acceptable signals even with few mg of material.

Fig. 7 shows the INS spectra, recorded at 1.8 K, of a mixture of the hydrogen isotopomers H$_2$@C$_{60}$:HD@C$_{60}$:D$_2$@C$_{60}$ with relative ratio 1:1:0.2. Analogous to the “absorbance” or the “extinction coefficient” of a material in electromagnetic interactions which represent cross-sections for the interactions of the electrons and atoms of a molecule with electromagnetic radiation, the “intensity” of the INS spectrum is determined by coherent and incoherent scattering cross-sections. The neutron–nucleus interaction has a spin-dependent term, sensitive to the relative orientations of the neutron and nuclear spins: the scattering from a lattice will vary from one lattice site to another due to differences in orientation of the nuclear spins and isotopic composition [39]. Coherent scattering arises from the average scattering potential whereas incoherent scattering represents the deviations from the average scattering potential. Coherent scattering can give rise to interference effects and is important in neutron diffraction. However, to elucidate the molecular dynamics where the motion induces its own fluctuations on the lattice of scattering sites, the incoherent scattering is the important component. Since they are a property of nuclear physics, the cross-sections naturally depend sensitively on the isotopic species. However, there is no systematic variation in scattering cross-section with atomic number or mass number. Importantly, the 1H incoherent cross-section is much larger than the 1H coherent cross-section and also is much greater than the combined 2H, 12C and 13C coherent and incoherent cross-sections. As a result, INS spectra of H$_2$@fullerenes are dominated by incoherent scattering from 1H. Therefore, all of the carbon atoms of the C$_{60}$ cage are essentially “invisible” to the neutron beams and do not produce a measurable signal.

A wide range of energy transfers, and therefore transitions between energy levels, can be probed by INS, depending on the configuration of a particular spectrometer. On the IN4 time-of-flight spectrometer used to record the spectra in Fig. 7 the energy transfer is in the range of ∼10 meV (∼80 cm$^{-1}$). Such values match rotational–translational transitions in the ground vibrational state of H$_2$ and HD.

The absence of ortho/para isomers for heteronuclear diatomic molecules, such as HD, implies a much stronger temperature dependence of the peak intensities for HD@C$_{60}$ than H$_2$@C$_{60}$ since the rotational states of HD are not locked in the stringent selection rules that H$_2$ must obey because of the Pauli principle. Therefore at sufficiently low temperatures only the lowest energy state of HD is occupied. This distinct characteristic between H$_2$ and HD would be revealed by a comparative analysis of the temperature dependence of the INS of H$_2$@C$_{60}$ and HD@C$_{60}$. Indeed, a variable temperature analysis of the INS data allows one to clearly distinguish among H$_2$ and HD transitions [40]. The observed INS transitions for H$_2$ at low temperatures are shown by the arrows in the rotational energy level diagram (Fig. 8).

Fig. 7. Inelastic neutron scattering spectra of a H$_2$@C$_{60}$:HD@C$_{60}$:D$_2$@C$_{60}$ mixture with relative ratio 1:1:0.2 at 1.8 K as obtained with IN4 time of flight spectrometer at ILL facility in Grenoble, France. Energy loss indicates that energy is transferred from the neutrons to the H$_2$@C$_{60}$ system and energy gain indicates that energy is transferred in the opposite direction during the scattering process. The offset bottom line in the energy loss section represent INS spectra obtained using incoming neutrons with an energy appropriate to optimize the resolution around 15 meV. Adapted from Ref. [40].

Fig. 8. Diagrammatic scheme showing the transitions and the corresponding energy levels that are relevant for INS experiments on H$_2$@C$_{60}$ at temperature near 4 K: para-H$_2$ is on the left and ortho-H$_2$ is on the right. In the energy range of ∼10 meV, INS experiments at cryogenic temperatures probe transitions only in the ground vibrational state $v=0$.
One of the most relevant features of the neutron interaction with matter is the explicit spin dependence. Transitions connecting ortho-H$_2$ to para-H$_2$ states and vice versa are observable in INS, since the neutron carries spin that allows the spin conservation requirements to be obeyed. The peak (Fig. 7, HH$^{1}_{0,-1}$) at 14.6 meV (117.8 cm$^{-1}$) in neutron energy loss corresponds to the pure rotational transition, $\Delta \lambda = +1$, from the para ground state to the ortho ground state. In free H$_2$ this highly forbidden transition in IR spectroscopy is at 118.6 cm$^{-1}$. The associated peak in neutron energy gain corresponds to the reverse transition from ortho to para. Differences in intensity reflect the relative proportions of ortho- and para-H$_2$. The difference in width of corresponding energy gain and loss peaks is a function of the spectrometer resolution and is not intrinsic to the sample. From IR analysis a ground state splitting of 115.6 cm$^{-1}$ can be obtained.

It is important to note that the ground state of ortho-H$_2$ state is triply degenerate (2$\lambda + 1 = 3$), if it exists in a perfectly symmetrical environment, to which the icosahedral environment of C$_{60}$ closely approximates. The corresponding INS transition in an asymmetric open cage fullerene, H$_2$@ATOCF, while essentially coinciding with that in H$_2$@C$_{60}$, is split into three peaks [41], proving that the rotational constant (given by the transition energy between the rotational energy levels) is not affected significantly by confinement in a closed fullerene. In addition, the level splitting shows that for H$_2$@ATOCF the asymmetric molecular field from the cage is able to lift completely the threefold degeneracy among the rotational sublevels in the ortho-H$_2$ ground state.

In INS, as in other forms of spectroscopy, there is a trade-off between sensitivity and resolution and to date the experiments performed on the IN4 spectrometer at Grenoble have provided no clear evidence of any structure in the analogous H$_2$@C$_{60}$ rotational peaks. Nevertheless, the resolution limit allows the establishment of an upper limit of 0.3 meV (≈ 2.4 cm$^{-1}$ or ≈ 3.5 K) on the size of any ortho-H$_2$ ground state energy splitting. Such a limit would not allow resolution of a feature observed at 0.1–0.2 meV in specific heat measurements [42] of H$_2$@C$_{60}$ ascribed to a lowering of the local symmetry of the cage in the solid state. It is also barely within the range of symmetry reduction suggested by the observation of residual anisotropic H–H dipolar coupling in the 1H nuclear magnetic resonance line shape at 4 K (see Section 6).

The observation of a detectable neutron energy gain peak at −14.6 meV in H$_2$@C$_{60}$ (Fig. 7, HH$^{1}_{0,-1}$) strikingly demonstrates the remarkable independence of the two spin isomers, since at 1.8 K thermodynamic equilibrium would imply that all the particles would be in the lowest energy para configuration. For example the neutron rotational energy loss peak corresponding to the pure rotational transition at 10.0 meV in Fig. 7 (HD$^{1}_{0,0}$) has no corresponding peak in energy loss at this temperature, since there are no spin symmetry constraints for transitions between all of the rotational levels of HD@C$_{60}$. In terms of dynamics, the rates of transitions between the $j = 0$ and $j = 1$ (no ortho–para states) rotational levels of HD are of the order of 10^{5} s$^{-1}$, whereas the corresponding rate of transitions between the $j = 0$ and $j = 1$ (para ↔ ortho) rotational levels of H$_2$ are of the order of 10^{12} s$^{-1}$. This difference of more than 18 orders of magnitude between two formally similar rotational transitions is profound and demonstrates the deep power of the Pauli principle to control the dynamics of molecular processes.

The +22.3 meV peak (179.9 cm$^{-1}$) corresponds to a pure H$_2$ translational transition (Fig. 7, HH$^{1}_{0,0}$). The translational excitation energy is similar to that of the first vibrational state $\nu = 1$ where it is 183.6 cm$^{-1}$ given by difference of the two Q(Ω) lines of 4255.0 and 4071.4 cm$^{-1}$, respectively (Fig. 5a and b). This raises another interesting feature of INS connected with the quantum nature of H$_2$ where the 1H nuclei appear as a discrete scattering object to the incident neutron. Since para-H$_2$ has total nuclear spin $I = 0$, there is no inelastic intensity associated with para–para transitions. Only the translational transitions of ortho–H$_2$ which has $I = 1$ appear in the INS spectrum. By contrast, there are no such constraints for HD, and both $j = 0$ and $j = 1$ species ($I = 1/2$ for hydrogen) can contribute to the purely translational transitions in the INS spectrum.

Surprisingly the translation–rotation splitting seems to be smaller than that expected from the IR observation of the corresponding transitions in the first vibrational state. A detailed discussion of the INS experiments and assignments for H$_2$@C$_{60}$ can be found in Ref. [40].

In conclusion, at temperatures near 4 K, the interpretation of the INS spectrum of H$_2$@C$_{60}$ is consistent and complementary to the IR spectroscopy of H$_2$@C$_{60}$ and the two methods provide essentially identical energy level diagrams. However, INS additionally provides information concerning the transitions between ortho- and para-H$_2$ manifolds which cannot be observed in IR. The profound difference between H$_2$ and HD resulting from the Pauli principle is beautifully revealed by the temperature dependence of the INS for the two isotopomers H$_2$ and HD. The HD system shows scattering from both the ortho–H$_2$ and para–H$_2$ even at temperatures near 4 K because the Pauli spin isomers cannot interconvert due to the lack of a spin catalyst and the ortho–H$_2$ population at room temperature persists at 4 K. On the other hand, HD shows scattering only for the lowest rotational level at temperatures near 4 K since only this rotational state is populated.

6. Nuclear magnetic resonance of H$_2$@C$_{60}$ at low temperatures

Nuclear magnetic resonance (NMR) studies yield a wealth of structural and dynamical information for a wide range of molecular structures. High resolution solution NMR has proved to be a valuable tool for monitoring the interconversion of the ortho (NMR active) and para (NMR silent) allotropes of H$_2$@C$_{60}$ and related fullerenes [27,28,43]. However, spatial information may be extracted only indirectly from solution NMR spectra via relaxation time measurements, and even then spatial information is often mixed with dynamical effects which are difficult to evaluate [44–47]. Some of the limitations of solution NMR can be overcome to a considerable extent when spectra are obtained from solid samples at low temperatures.

Samples are usually in the solid phase at cryogenic temperatures (a few degrees above 0 K). Solid state NMR (ssNMR) can access a wide range of temperatures from well above room temperature to the mK regime. Indeed, ssNMR has been employed to investigate H$_2$@C$_{60}$ at temperatures down to a few K [48,49]. Previous NMR studies on interstitial H$_2$ molecules in solid fullerene C$_{60}$ molecules [50,51] provide a sound framework for analyzing the behaviour of confined H$_2$ quantum rotors using solid state NMR. The technique has been employed to investigate the timescale and anisotropy of quantum rotation in H$_2$@C$_{60}$, as well as the behaviour of the cages themselves and the interactions between ortho-hydrogen molecules enclosed in neighbouring cages. In addition, 13C NMR yields information about the dynamics of the C$_{60}$ cages while 1H NMR can probe directly ortho-hydrogen (recall that para-hydrogen is not NMR active).

The solid-state 13C NMR of H$_2$@C$_{60}$ exhibits clear signatures of temperature-dependent motional phase transitions [48]. Above 240 K, the fullerene cages undergo rapid cage rotations. Below 240 K, free tumbling is replaced by thermally activated jumps among equivalent configurations. Owing to the rapid reorientation of the C$_{60}$ and to the equivalence of the positions of the atoms in the cage, a single narrow 13C peak is observed at temperatures down to 130 K. However, below 130 K, a chemical shift anisotropy (CSA) broadened component appears. Freezing of the rotational motion of the C$_{60}$ cage (on the NMR timescale) is achieved at 100 K, when the...
sharp component vanishes: the static spectrum consists entirely of a CSA broadened peak. The cage dynamics in H₂@C₆₀ is very similar to that in pure C₆₀, although the motional transitions in C₆₀ are observed at a temperature ≈ 20–40 K higher than in H₂@C₆₀ [52].

The § H NMR spectra of H₂@C₆₀ at 10 K, 4.45 K and 2.90 K are shown in Fig. 9 [49]. In this relatively small temperature range the line shape is visibly modified with respect to higher temperatures [49]. In the large temperature window from room temperature down to 10 K the spectrum (Fig. 9a) consists of a single narrow (≈1 kHz) component with a characteristic chemical shift of –1.1 ppm: since the hydrogen molecule inside C₆₀ has free isotropic rotational freedom, the anisotropic interactions are nearly averaged out [49]. However, the width of the signal gets broader at lower temperature when motional averaging among the three sub-rotational ortho-H₂ (λ = 1, m₂ = 1, 0, 1) levels becomes less effective.

At 4.45 K some interesting features appear at the sides of the central peak (Fig. 9b, arrow) [49]. So far, these features are unexplained although they may hint at spin-rotation effects related to rotational molecular resonance effects observed in molecular beam experiments [53,54].

As the temperature is lowered to 2.90 K in addition to the sharp feature, a weak broad feature (≈170 kHz) appears at the base of the main sharp peak (Fig. 9c, arrows). Such a broad feature is consistent with a homonuclear dipolar powder pattern (“Pake pattern”) as observed in interstitial H₂@C₆₀ complexes [51] and H₂ trapped in asymmetric cages [48]. The peak-to-peak separation (distance between the arrows in Fig. 9) in the “Pake pattern” is consistent with a homonuclear dipolar coupling of ~116 kHz. This corresponds well to the theoretical dipolar coupling in the j = 1 rotational state. The delocalization of the j = 1 quantum wavefunction leads to a scaling of the dipolar interaction by a factor 2/5 when compared to the interaction between localized hydrogen at the same internuclear distance [55].

The low temperature Pake pattern is shown more clearly in Fig. 10. This shows new spectral data obtained on a purified and highly crystalline sample of H₂@C₆₀ at 4.8 K, using a “Solomon echo” sequence [56] to avoid interference from acoustic ringing and from probe background signals. The spectrum displays two distinct components: a narrow central peak and a broad component which has the “Pake pattern” form.

The presence of Pake-pattern features in the low temperature § H spectra indicates that the local H₂ environment does not possess exact cubic symmetry, at least in part of the sample. The reduced symmetry of the H₂ sites causes a splitting of the rotational m₂ levels. The temperature at which these effects are observable in H₂@C₆₀ implies rotational splitting of order of few Kelvin (1 K = 1.44 cm⁻¹), a result which is consistent with specific heat measurements [42]. The observed symmetry reduction may be related to statistical disorder caused by impurities, natural ¹³C nuclei, cages containing ortho-H₂ and para-H₂ molecules or empty cages. Symmetry reduction may be an intrinsic feature of the molecular organization in C₆₀ crystals, which adopt the simple cubic structure at low temperatures [57]. At the present the mechanism of the observed symmetry reduction is not known.
The energy level diagram in Fig. 11 provides an overview of the quantum transitions studied by IR, INS, and NMR spectroscopy. This shows how these three different physical techniques complement each other in providing a full picture of the quantum dynamics in this physical system.

The H$_2$@C$_{60}$ molecule and other related endofullerenes provide a fascinating supramolecular complex for the exploration of the quantum characteristics of a rotor trapped in a nearly spherical host. The system is unique in its accessibility to precise theoretical computations that can be compared to spectroscopic techniques such as IR, INS and NMR at temperatures near 4 K. The quantization of H$_2$ translational motions and the coupling of translational and rotational motions are predicted by theory and clearly demonstrated by IR and INS investigations. The operation of the Pauli principle and its requirement for the entanglement of the rotational and nuclear spin states is beautifully revealed by the IR and INS studies. The subtleties of the environment (inhomogeneities in the lattice due to the existence of ortho-H$_2$ and para-H$_2$ or adventitious impurities that distort the lattice) can be revealed by ssNMR analysis at cryogenic temperatures. Future IR, INS and NMR experiments, together with theory, promise further refinements of the quantum secrets of the marriage of the simplest molecule, H$_2$ and one of the most symmetrical molecules, C$_{60}$.

8. A coda

A coordination chemist who has gotten this far into this review is certainly entitled to ask “What is a review of the spectroscopy of H$_2$@C$_{60}$ doing in CCR”? First, since this issue is a tribute to Harry Gray, my colleague of nearly 5 decades, the article is a celebration of the ability of this great scientist to see, because of his outstanding scholarship and knowledge and respect for past science, what others before him have missed in some cases.

So let us digress briefly to describe how we might take a cue from Harry and find a reasonable justification for the appropriateness of including this article in Coordination Chemistry Reviews. Certainly any article derived from the teachings of Alfred Werner would be an appropriate candidate for publication in Coordination Chemistry Reviews.

Alfred Werner was awarded the Nobel Prize in Chemistry in 1913 “In recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier investigations and opened up new fields of research, especially Inorganic Chemistry”.

In his award address Werner states: “I wish to discuss briefly the nature of the affinity forces bringing about the formation of these compounds. I have called these affinity forces secondary valences, to distinguish them from those called primary valences which bring about the formation of first-order compounds. In spite of the vast amount of experimental data we are not yet able to characterize precisely the difference that exists between the two types of valence. Most recent investigations have however shown that there is no fundamental difference between primary and secondary valences and that both types of valence have entirely the same significance for the cohesion of the atoms in the molecule.” These “secondary valences” sound a lot like the stuff of supramolecular chemistry.

As Lehn [59] has pointed out, novelty in science is rare and often what appears to be novel is simply a new way of looking at past science. Coordination implies the fixation of a selective neighborhood relationship between a host and a guest, i.e., a guest@host complex. In the most general sense from the viewpoint of a guest, coordination means that the host can always be assured to be in its neighborhood of the guest! In this sense, supramolecular chemistry is simply a generalization of Werner’s coordination chemistry. The structure of the supramolecular complex, H$_2$@C$_{60}$, certainly looks nothing like a metal coordination complex to an inorganic chemist. For H$_2$@C$_{60}$, if you know you are in the vicinity of a H$_2$ molecule, then you know there are 60 carbon atoms in the neighborhood! The specific structure corresponds to an “endo” coordination, rather than the typical “exo” coordination characteristic of metal complexes.
This perhaps more liberal view of coordination is not particularly revolutionary if we ignore theories of bonding at the first level and just think about neighborhood relationships that are determined by experiments. Once the neighborhood has been established, an appropriate theory will follow!

Acknowledgements

The authors thank the NSF for generous support of this research through grant number CHE 07 17518, the Estonian Ministry of Education and Research Target Financing Grant No. SF06900s09, and the Engineering and Physical Sciences Research Council of the UK.

References