Subject Index

Note: Page numbers in *italics* refer to figures or tables.

absorbance, enhancement of 28–9
adhesion linking layers 173, 174, 181–3
adsorbate 82
adsorption
 modes 102–5
 multilayer *105*, 113–15
 non-specific 174–5, 183–5
 role in life processes 82
adsorption kinetics 81–122, 282–6, 380–2
 basics and terminology 81–6
 distribution analysis model 383–90
 mass transfer 90–8, 284–5
 solute transport and interaction 87–90
 mechanisms 98–9
 effect of competing reactions 101–2
 idealized partition process 99–101
 surface functions 102–5, *105*
 multilayer growth *105*, 113–15
 saturation 104–12, 105
 optical quantification 86–7
 reaction rate 87–90
 reaction- vs transfer-limited rate 87–90
affinity 8
amine coupling
 reductive amination 202–3
 via reactive esters 199–202
aminopropyltriethoxysilane 183
analysis cycle 5, 221–4
analyte
 calibration curves 6–7
 correction for depletion 128–9
defined 4
 small molecules 7, 193, 277, 324–7
angle scanning instruments 40–1, 59–60
microarray analysis 230–2
miniaturization 315
angle shift 36, 37
angle units 38
angle tuning 315
antibiotics *340*, 342, 346, 347
antibodies
 microarrays *see* immunoassays
 immobilization of 213
 Salmonella 350
AOAC certification 344–5
APTES 183
assay 3–6, 226–8
 inhibition 227–8, 336, 337
 surface competition 337, 338
 see also immunoassays
association 5, 6
 constants 7–8
 and mass transport limitation 125–6, 284–5
atomic force microscopy 360
attenuated total reflection 20
autoimmune diseases *see*
 immunoassays
baseline 4–5, 5, 6, 224–5
β-agonists 342–3, 347
β-lactams 347–8
Biacore instruments 11, 12, 53, 69–78
A100 70, 71, 73–5
basic systems reviewed 69–70
FLEXChip 61, 69, 70, 75–7
Q sensor 334, 338–9
T100 70–3
binding
competing ligand 137–41
intermolecular bivalent 147–52
models 131–5, 143–52, 152–4
rebinding 137–41, 226
sites 82–4
thermodynamics 154–61
bioaffinity 8
bioinert/immobilization matrices 173, 174, 181
bioinert hydrogels 185–7
non-specific adsorption 183–5
biomolecular interactions 174–7
kinetics/thermodynamics see adsorption kinetics; ligand–receptor interactions
biosensors
definition 9
historical development 9–12
see also sensor chip
biotin 344
biotinylation 212–13, 232–3
bivalent binding 147–52
bovine milk proteins 349
Brewster angle 18
buffer solution 4–5, 223–5
and electrostatic interaction 176–7
bulk effect 222
calibration curve 6–7
calorimetry 161–3
capture arrays 363
carbodiimides 199–200
see also EDC
carboxymethylated dextran see under hydrogels
cell diagnosis 375–6
cephalosporins 347
ceramic substrates 182–3
Charm tests 348
chip see sensor chip
chloramphenicol 340, 342, 346
chromophores 278, 281–2, 359
CLAMP software 133–4, 147
clenbuterol 342, 347
clinical diagnostics 313–32, 355–6
advantages of SPR 313–14
bulk refractive index compensation 323–4
immunoassay
complex samples 327–9
concentration gradient 279–80
disposable card 328, 329
small molecules 324–7
instrument miniaturization
optical system 316
wavelength and angle tuning 315
optimizing imager performance 317–21
temperature fluctuations 321–3
see also lab-on-a-chip; microfluidic devices
coherence length 23–4
color multiplexing 306–8
competing ligand 137–41
competition reactions 101–2
competitive assay 226–7
complex samples 327–9
concentration gradient 379–80
conformational change 144–7, 184
convection 178
counter-ion evaporation 185, 196
coupling reactions 203–12
cuvette-based instruments 11, 48–9, 61–2
correction for analyte depletion 128–9
mass transfer process 90–1, 92, 95, 143, 178
Cytop 251, 253, 254
desorption 84
dextran brush 277, 298
dextran hydrogels see under hydrogels
diagnostic card 328
diffraction grating 20–1
instrumentation 41–2, 301
diffusion and diffusion layer 178–81, 192
mass transfer kinetics 94–5
Subject Index

397
digital microfluidics 373–6
dip 2–4, 22–3
 fluorescence and absorbance enhancement 29
 presentation in sensorgrams 36–8
 silver vs gold layer 27
direct assay 222, 227
direct detection 4, 174
directed immobilization 212–13
dispersion relation 17–19, 20
disposable diagnostic card 328, 329
dissociation 5, 6
 competing ligand 139–41
 constants 7–8
 and mass transfer limitation 125–6
 rebinding model 137–9
distribution analysis 180, 181, 383–9
dithiothreitol 204
DNA
 amplified detection
 gold nanoparticles 260–2
 microRNA detection 264–9
 RNase H 257–8
 coding technology 364–6
 immobilization 211
 microarrays see microarray imaging
drug development 123–4, 165–7
dry immobilization 197–9
dynamic range of scans 230–2
EDC–NHS chemistry 125, 175, 192, 199–200
coupling procedure 201
 hydrazide activation 207–8
EDC/(sulfo) coupling 200–1
electrochemical SPR 369
electroosmotic microfluidic devices 367–9
electrostatic immobilization 210, 211
electrostatic interactions 175–7, 185
electrostatic preconcentration 195–7, 196
electrowetting 374–6
 entropic stabilization 185, 186
 enzymatic enhancement 247, 254, 264–5
equilibrium constants 7–8, 84
 model for distribution analysis 383–5
equilibrium signal 126–8, 286
1-ethyl-3-(3-dimethylaminopropyl)-
carbo diimide 199–200, see also
 EDC–NHS
evanescent field 3, 17, 86, 177–8, 191
 and hydrogel thickness 186, 192
 and optical requirements 41
evanescent wave 16–17
EVILFIT software 385
excitation 19–21
Eyring plots 163–5
fan-shaped beam instruments 39, 50–4, 55
 field enhancement 21–2
 field of view 320–1
 filter layers 193, 194
 fire blight 342
 fixed angle instruments 41, 54–9
 and microarray analysis 228–30
FLEXchip 61, 69, 70, 75–7, 355
flow cells 45–8
 mass transfer process 90–8, 143
 microfluidic see microfluidic devices
 flow rates 94–7, 178
fluidics see microfluidic devices
fluorescence 234, 362
 enhancement of 28–9
fluorescence spectroscopy 275–8, 309, 359–60
 color multiplexing 306–8
 fluorescence imaging 306–8
 grating coupling 301–3
 kinetic studies 286
 hybridization of oligonucleotides
 286–98
 protein binding 298–300
 Kretschmann configuration 278–81, 300–1, 307
 long-range surface plasmons 303–6
 protein binding 298–300
 wavelength-resolved spectra 299–300
folic acid 344
food analysis 333–4
 assay formats/steps 334–8
 genetically modified organisms 350–1
 honey 342, 343, 345–6
inorganic dielectrics 182–3

instrumentation 334, 335, 338–9
milk 347–50
Qflex kits 334, 340
 AOAC certification 344–5
Salmonella antibodies 350
veterinary drug residues 333, 340
 antibiotics 342, 346, 347
β-agonists 342–3
sulfonamides 339, 340, 341–2, 346
Tylosin 343
vitamins 340, 343–4
foulbrood 342, 346
Frank–van der Merwe growth 113, 114
free flow electrophoresis 369–73
Fresnel equation 27–8
gauze defects 182
genetically modified organisms 350–1
genotyping 247, 262–4
glass substrates 182–3
global kinetic analysis 152–4
 bimolecular models 131–5
 complex binding models 143–52
glycidylpropyltrimethoxysilane 183
glycoproteins 207–8
gold layer 26–7, 44
 adhesion linking layers 181–2
 and coherence length 23–4
 and electroosmotic flow devices 367–9
sputtered surface 190, 191
gold nanoparticles see nanoparticles
GPTMS 183
gradient chemistries 379–80
grating coupler 21
 fluorescence spectroscopy 301
 instrumentation 41–2
growth promoters 333, 343
His₆-tagged ligands 211
honey 342, 343, 345–6
hybridization reactions 286–97
hydrazide activation/coupling 207–8
hydrodynamic addressing 47–8, 73, 362
hydrogels
dextran 10, 12, 175, 187, 191–3
 epoxy activation 208–11
 for different sensor applications 188
film density 192–3
film thickness 186, 192
filter layers 193, 194
polymer brushes 277, 298, 376–8
protein-compatible polymers/
funtionalities 186, 187
surface chemistry 185–7
synthetic polycarboxylates 192
three-dimensional nanoarchitecture 191–4, 277
two-dimensional surfaces 189–91, 276–7
hydrophilic interactions 181
protein-compatible polymers 187
hydrophobic interactions 175, 176, 177, 184
hyphenation technology 356–7, 359–60
mass spectrometry 357–9
image averaging 318
imaging instruments 43, 63–9, 356
IBIS iSPR for multiplex analysis 228–34
see also microarray imaging
immobilization see ligand
 immobilization
immobilization matrices see bioinert
 matrices
immunoassays 222, 225–8
analysis cycle 222–4, 228–32
assay formats 225–8
buffer solutions 224–5
dynamic range/reliability 230–1
experimental setup 228–30
limit of detection 232–4
monoclonal antibody screening 375–6
non-milk proteins 348–9
serum antibodies of rheumatoid arthritis 235–42
SPR and mass spectrometry 357–9
see also clinical diagnostics;
 microfluidics
inhibition assays 227–8, 336, 337
microfluidics
instrumentation 35–80
 basic principles 8–9, 35–8
 future trends 354–6
 general optical requirements 44–5
 history of 11–12
 imaging instruments 43
 liquid handling systems 45
 cuvettes 48–9, 232
 flow cells 45–8, 229, 232
 miniaturization 314–17
 optical systems 38–9
 angle scanning 40–1, 315
 fixed angle 41
 grating coupler 21, 41–2
 interferometers 43
 resonant mirror 42, 62
 wavelength interrogation 42
 instruments reviewed 50, 51, 52
 angle-scanning
 ESPRIT (Eco Chemie) 40, 59–60
 SPRINGLE (Eco Chemie) 40, 59–60
 Biacore instruments see Biacore
 fan-shaped beam
 BI-SPR (Biosensing Instruments) 50, 54
 DKK-TOA SPR-20 (Tacadanobaba) 52, 55
 Plasmonic Biosensor (Wallenfels) 53, 55
 SensiQ (Nomadics) 52, 54
 SR7000 DC (Reichert) 52, 55
 fixed-angle
 β-SPR (Sensia) 56, 57
 BIOSUPLAR-321 (Sinzing) 56, 57
 K-MAC SPRi/SPR LAB (Korea Materials) 57–8
 Moritex (Myutron) 54, 56
 Multiskcop of Optrel GBR (Kleinmachnow) 56
 Nanofilm EP 3 (Göttingen) 58–9
 Resonant Probes SPTM (Goslar) 54
 imaging instruments
 GenOptics 64
 IBIS sSPR (IBIS Technologies) 67–8, 69, 228–30
 LFIRE (Maven Biotechnologies) 64, 66
 MultiSPRinter (Toyobo) 64, 66, 67
 Plasmon Imager (Graffinity Pharmaceuticals) 67, 68
 Proteomic Processor (Lumera) 65, 66
 ProteOn XPR36 (BioRad Laboratories) 64, 66
 SPRi-Lab+ (GenOptics) 64, 65
 SPRi-Plex (GenOptics) 64, 65
 SPRImager II (GWC Technologies) 63
 other systems
 IAsys Neosensors (Sedgefield) 61–2
 SPR 100 module (Thermo Electron Corp.) 60–1
 integrated microfluidic cartridge 465
 interaction arrays 363
 interference filter 315
 interferometers 43
 intermolecular bivalent binding 147–52
 ionic immobilisation 210, 211
 k_{obs} kinetic analysis 130–1
 kinetics
 determination of parameters 5–6, 7–8
 instrumentation for 43, 45
 kinetic models see adsorption kinetics;
 ligand–receptor interactions
 surface enzyme 254–7
 Kramers–Kronig relation 29
 Kretschmann configuration 2, 9, 10, 20, 279
 fluorescence spectroscopy 279, 304, 305, 307
 lab-on-a-chip 354, 362, 367, 378
 biomarker imaging 369–73
 electroosmotic microfluidic devices 367–9
 labeling 174–5, 225
 Lactobacillus plantarum 344
 Langmuir absorption model 282–4
 see also adsorption kinetics;
 ligand–receptor interactions
lateral resolution 360
ligand immobilization 125–6, 173, 174, 175, 194–5, 221–2
adsorptive methods 195
cova lent coupling 195
amine coupling through reductive amination 202–3
amine coupling via reactive esters 199–201
epoxy-mediated 208–11
hydrazide activated aldehydes 207–8
thiol coupling 203–7
directed (biotinylated) methods 212–13
electrostatic methods 210–11
preconcentration 195–7
and kinetic analysis 180–1
membrane protein immobilization 213–15
photoactivation of surfaces 378–9
preconcentration procedures 195
dry immobilization 197–9
electrostatic 195–7
summary of strategies 214–15, 216–17
ligand–receptor interactions 4–5, 123–71, 180–1
affinity constants
from equilibrium signals 126–8
from kinetic analysis 129–34
in solution vs at the surface 154–8
complex binding models 143
conformational change 144–7
intermolecular bivalent bonding 147–52
drug research 123–4, 165–7
mass transport limitation see transport-limited interactions
rate constants 129–31
thermodynamics
binding constants in solution 154–8
Eyring transition states 163–5
SPR compared to calorimetry 161–3
van’t Hoff analysis 158–61
ligation chemistry 259–60
light harvesting complex 299–300
limit of detection 232–5
line spotter 365
lipid bilayers 214
liquid handling systems see under instrumentation
long-range surface plasmons 251, 253, 254
and fluorescence spectroscopy 303–6
maleimide coupling 205–6
manufacturers see instruments reviewed
mass spectrometry 357–9
mass transport/transfer 87–90, 178–80, 184
transfer in biosensors 90–8, 295
see also transport-limited interactions
matrix sites 82
meat 350
membrane protein immobilization 213–15
mercaptoalkyls 190
metal substrates 182
micelles, mixed 213
microarray imaging 43, 67, 269, 362–3
fluorescence spectroscopy 306–8
instrumentation and surface chemistry 247–54
kinetic and thermodynamic parameters 251
long-range surface plasmons 251, 253, 254
microchannel flow cell 251, 252
surface probes/target molecules summarized 249
nanoparticle-amplified sensing 260–2
microRNA detection 264–9
SNP genotyping 262–4
optimizing clinical performance 317–23
spotting on gold 362–4
DNA coding technology 364–6
surface enzymatic enhancement 247, 254, 264–9
enzyme kinetics 254–7
RNA microarrays with ligation 259–60
RNase H-amplification of DNA 257
see also immunoassays
microfluidic devices 251, 252, 359, 361–2
concentration gradient immunoassay 379–80
digital microfluidics/electrowetting 373–6
electroosmotic flow 367–9
free flow electrophoresis 369–73
integrated cartridge 465
line spotter 366
microRNA detection 264–9
milk 347–9
miniaturization 314–17
see also lab-on-a-chip
molecular interactions 174–7
monoclonal antibody screening 375–6
multi-layered systems, analysis of 27–8
multilayer adsorption 105, 113–15
multiplex analysis cycles 228–34

N-hydroxysuccinimide see EDC–NHS
nanoarchitecture 174, 187–8
three-dimensional hydrogels 191–4
two-dimensional surfaces 189–91
nanoparticles 29–31, 360–1
amplified DNA detection 260–2
microRNA detection 264–9
NHS see EDC–NHS
nitritoltriacetic acid 210, 211
non-specific binding 174, 175, 183–5, 327
NTA 210, 211

oligonucleotides 210, 286–98, 364
and gene-modified organisms 351
optical systems see under instrumentation
optogels 10, 44, 356
oscillatory flow 362

p-polarized light 2, 17–18, 21, 44
pantothenic acid 344
partition processes 99
passivation layer see adhesion linking penicillin 340, 342, 347
pharmaceutical research 123–4, 165–7
phase jump 22–3
phenytoin 325, 326

photoactivation 378–9
physics of SPR 15–33, 86–7
planar flow cell 46–7
plasma deposition 183
plasmons see surface plasmons
plastic substrates 183, 195
platinum 182
point-of-care diagnostics see clinical diagnostics
polarization control 317
polymer mixtures hydrogel 192
poly(dimethylsiloxane) 329
flow cell 252, 252
line spotter 365
microarray fabrication 364
polymer brushes 277, 298, 376–8
portable SPR see clinical diagnostics
preconcentration methods 195–9
protein A-modified surfaces 213
protein binding
fluorescence spectroscopy 297, 298–301
see also immunoassays; ligand–receptor interactions
protein microarrays 362–3
see also microarray imaging
proteins
compatible matrix polymers 186–7
coupling reactions 199–207
disulfide reduction 204
immobilization 213–15
milk assays 348–9
non-specific absorption 184–5
proteomics 357
lab-on-a-chip 369–73
Qflex kit 334, 335
quantum dots 306, 308
ractopamine 343
Raman spectroscopy 30, 31
rate constants 7–8, 84
model for distribution analysis 383–5
reaction rate 87–90
REBIND software 137–8
rebinding 137–41, 226
Subject Index

receptor–ligand interactions see ligand–receptor
reductive amination 202–3
reflectance 18, 29
reflectivity change 36, 38, 45
refraction
 and evanescent wave 16–17, 86–7
SPR principles 2–3, 222–3
refractive index
 bulk compensation 323–4
 optical matching 44, 356
 resolution 317–20
 temperature dependence 44–5, 321–2
regeneration 5, 6, 175, 176
 solution 225, 338
resolution
 lateral 360
 refractive index 317–21
resonance 2, 18, 279–80, 281
resonant mirror measurements 42, 62
rheumatoid arthritis 235–43
 auto-immune antibody complexes 357–9
riboflavin 344
RNA microarrays 259–60
RNA–DNA heteroduplexes 254–60
RNase H
 amplified detection of DNA 257–8
 and surface enzyme kinetics 254–7
Salmonella 350
SAMs 182, 190, 191, 277, 300
sandwich assay 227, 228
saturation, surface 104–12, 105
scanning probe microscopy 360
scanning SPR see microarray imaging
Scheimpflug condition 319, 320–1
Schiff bases 202
selective capture 3
self assembled monolayers 182, 190, 191, 277, 300
sensitivity, optimization of 26–7
sensor chips
 applications and surface structure 188
development/history 1, 9–12
 elements of 173–4, 181
 nanoarchitecture 174, 187–9
three-dimensional hydrogels 191–4
two-dimensional surfaces 189–91
optimal surface selection 177–81
polymer brushes 277, 298, 376–8
surface interactions 174–7
 see also adhesion linking layers;
 bioinert matrices; ligand immobilization
sensorgrams 3, 5, 6, 223
 types/presentation of dip 36–8
SERS 30
serum antibodies 235–42, 357–9
silanes 182–3
silver layer 26–7, 44
 adhesion linking layer 182
 and coherence length 23–4
single nucleotide polymorphisms 262–4
small molecules 7, 193, 324–7
smart polymer brushes 376–8
spotting, microfluidic 362–6
SPREETA chip 314, 366
SPRI see microarray imaging
stagnant layer 95–7, 178
streptavidin-modified surfaces 212
streptomycin 340, 342, 346
substrate, chip 173, 182–3, 195
 photoactivatable 378–9
sulfadiazine 340, 341–2
sulfamethazine 340, 341–2
sulfathiazole 340, 346
sulfonamides 340, 341–2, 346
surface chemistry see sensor chip
surface competition assay 337, 338
 surface conditioning 4
surface enzymatic enhancement 247, 254, 264–5
surface plasmon fluorescence
 spectroscopy see fluorescence spectroscopy
surface plasmon resonance (overview)
 1–13, 221–4, 275–6
 assay 3–6
 calibration curve 6–7
dip to real time measurement 3–4
 experimental parameters 26–7
Subject Index

history and biosensor development 1, 9–12
instrumentation 8–9
kinetic parameters 7–8
multi-layered systems 27–8
surface plasmons 15–16
analysis of multi-layered systems 27–8
coherece length 23–4
dispersion relation 17–19, 20
enhanced fluorescence and absorbance 28–9
field enhancement 21–2
long-range 251, 253, 254
and nanoparticles 29–31
phase jump 22–3
resonance 18
surface-enhanced Raman spectroscopy 30
symbols 32–3, 118–19, 168
T4 DNA ligase 259–60
temperature stabilization/compensation 44–5, 322–3
thermodynamics
affinity in solution vs at the surface 154–8
compared to calorimetry 161–3
Eyring plots 163–5
van’t Hoff analysis 158–61
thioethers 182
thiols 182
coupling reactions 203–7
tilted image plane 320–1
transition state analysis 163–5
transport see mass transport
transport-limited interactions 382
adsorption kinetics 87–90, 284
detection and modeling 135
assay of high off-rates 141–2
association and viscosity 135–7
competing ligand 139–41
dissociation re-binding model 137–9
quantitative considerations 142–3
ligand-receptor affinity/kinetics 125–35
oligonucleotide hybridization 296–7
Tylosin 343
van’t Hoff analysis 158–61
veterinary drugs 333, 339–46
viscosity and association 135–7
vitamins 340, 343–4
Volmer–Weber growth 113, 114
Vroman sequence 184
wall-jet flow cell 47
wavelength interrogation 42
wavelength tuning 315
wavevectors/wave equations 16–17